
University
of Southern
California

Micro Benchmark
Analysis of the KSR1

Rafael H. Saavedra
R. Stockton Gaines
Michael J. Carlton

ISI/RS-93-394

November 1993

19950® os5

Dl'lw k,"»**** * ^unAtfMD 1

STA1

Appro lVed tor public wtaa«

INFORMATION
SCIENCES

INSTITUTE

DiBtributionJJBlifflited

310/822-15II

4676 Admiraltx Wax/Marina del Rex/California 90292-6695

ISI Reprint Series
ISI/RS-94-394

November 1993

Micro Benchmark
Analysis of the KSR1

Rafael H. Saavedra
R. Stockton Gaines
Michael J. Carlton

ISI/RS-93-394

November 1993

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D

By
Distribution/

Availability Codes

Dist

m
Avail and/or

Special

University of Southern California
Information Science Institute

4676 Admiralty Way, Marina delRey, CA 90292-6695
310-822-1511

The research was sponsored by the Advanced Research Projects Agency under Rome Laboratories Contract No.
F306G2-91-C-O146. Views and conclusions contained in this report are the authors* and should not be interpreted as
representing the official opinion or policies, either expressed or implied, of ARPA, Rome Laboratories, the U.S.
Government, or any person or agency connected with them.

Approved for pabHn release;
Distribution Unlimited

REPORT DOCUMENTATION PAGE
FORM APPROVED
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to aver age 1 hour per response, including tlw time lor '™f»W^™rt?™;™'c^^**n9 **■
LnurceiT mthenna andI maintainina the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimated or any
SheTSoertoHhFs collector?of Xmatfon deludingsuggestingsfor reducing this burden to Washington Headquarters Services, directorate lor nformat.on'Operations
ÄPorts%1sÄ ATng1on> 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20S03.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

November 1993
3. REPORT TYPE AND DATES COVERED

Reprint Series

4. TITLE AND SUBTITLE

Micro Benchmark Analysis of the KSR1

6. AUTHOR(S)
Rafael H. Saavedra, R. Stockton Gaines and Michael J. Carlton

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, Virginia 22203-1714

S. FUNDING NUMBERS

C-F30602-91-C-0146

8. PERFORMING ORGANIZATON
REPORTNUMBER

ISI/RS-93-394

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Reprinted from Proceedings of Supercomputing '93, IEEE Computer Society Press (1993), 202-213, Portland, Oregon. Also
available as a technical report from the USC/Department of Computer Science. August 1993. USC-CS-93-538.

12A. DISTRIBUTION/AVAILABILITY STATEMENT

UNCLASSIFIED/UNLIMITED

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A new approach, micro benchmarks has recently been developed. Using this technique, we have analyzed
the KSR1, and in particular the "Allcache" memory architecture and ring interconnection. We have been
able to elucidate many facets of memory performance. The technique has enabled us to identify and charac-
terize parts of the memory design not described by Kendall Square Research. Our results show that a miss
in the local cache can incur a penalty ranging from 7.5 microseconds to 500 microseconds (when a dirty
"page" in the local cache must be evicted). The programmer must be very careful in placement and access-
ing of data to obtain maximum performance from the KSR1; the data presented here will help in under-
standing the performance actually obtained.

14. SUBJECT TERMS

Shared-Memory Multiprocessors, Memory Hierarchy Performance, Micro Bench-
marks, Network Interconnects, Performance Evaluation.

17. SECURITY CLASSIFICTION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

15

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. it is important
that this information be consistent with the rest of the report, particularly the cover and title page,
instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month.a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program
element numbers(s), project number(s), task
numbers), and work unit numbers). Use the
following labels:

C - Contract
G - Grant
PE -Program

Element

PR - Project
TA -Task
WU -WorkUnit

Accession No.

Block 6. Authors). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
numbers) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)
and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

■ See authorities.
• See Handbook NHB 2200.2.
. Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA • Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

~~~ Standard Form 298 Back (R«v. 2-89) 



Micro Benchmark Analysis of the KSR1§ 

Rafael H. Saavedra 

Computer Science Department 
University of Southern California 

Los Angeles, California 90089-0781 
saavedragpollux.use.edu 

R. Stockton Gaines and Michael J. Carlton 

USC/Information Sciences Institute 
4676 Admiralty Way 

Marina del Rey, CA 90292 
{gaines,carlton)gisi.edu 

ABSTRACT 

A new approach, micro benchmarks, has recently been developed. 
Using this technique, we have analyzed the KSR1, and in particu- 
lar the "ALLCACHE" memory architecture and ring interconnec- 
tion. We have been able to elucidate many facets of memory per- 
formance. The technique has enabled us to identify and character- 
ize parts of the memory design not described by Kendall Square 
Research. Our results show that a miss in the local cache can incur 
a penalty ranging from 7.5 microseconds to 500 microseconds 
(when a dirty "page" in the local cache must be evicted). The pro- 
grammer must be very careful in placement and accessing of data 
to obtain maximum performance from the KSR1; the data 
presented here will help in understanding the performance actually 
obtained. 

1. Introduction 
The KSR1 from Kendall Square Research is a novel new parallel 
computer. It is the first commercial machine embodying a scal- 
able all cache form of shared memory architecture. In addition, 
mere are a number of other interesting features of the machine. 
We report our observations of the KSR1, obtained by means of a 
suite of small benchmarks mat expose the details of the machine 
characteristics. We refer to these small benchmarks as micro 
benchmarks. In section 2 we briefly describe the micro bench- 
mark approach, and its application to parallel machines. The 
micro benchmark suite has been developed and used to analyze the 
performance of uniprocessor machines [12, 13]. We describe the 
architecture of the KSR1 as we understand it in section 3. We 
have run our standard micro benchmark suite for processor perfor- 
mance, and included the results together with comparative results 
from two other CPUs of interest The main focus of our work has 
been to understand and measure the performance of the KSRl's 
novel "ALLCACHE" memory, which we have extensively 
analyzed with a new set of micro benchmarks. This work and the 
results are described in section 5. Section 6 analyses a set of 
experiments used to measure the effect of contention in the inter- 
connection network. 

2. The Micro Benchmark Approach 
Recently, one of us (Saavedra) has explored a new approach to 
benchmark analysis of computers. This approach has been docu- 
mented in several papers [12,  13,  14].   The approach was 

§ This research was supported by the Advanced Research 
Projects Agency under Rome Laboratories Contract 
F30602-91-C-0146. 

developed in reaction to the use of large applications as bench- 
marks. Though it is hoped that large applications will be more 
representative of real workloads than synthetic benchmarks or 
small kernels, it is not clear what features of a particular system 
they exercise, or what actually accounts for the differences in the 
performance of these benchmarks on different machines. 
The micro benchmark approach returns to the idea of measuring 
specific features of (he machine. But in contrast to measuring only 
a few parameters, such as floating point multiply, the approach 
consists of (1) measuring every observable feature of the machine, 
and (2) making use of the collected set of data in an integrated 
way. For uniprocessors, one of the most powerful ways of using 
the micro benchmarks is to predict the performance of a program 
on a new computer without first porting the program and measur- 
ing the results. This is done by analyzing the program to deter- 
mine how much use is made of each of the machine features meas- 
ured by the micro benchmarks, and then using the results of the 
execution of only the micro benchmark suite on the new computer 
to predict the running time of the program. Using the approach, it 
has proven possible to estimate accurately the performance of a 
wide range of programs, including standard benchmark suites such 
as Spec and Perfect [16, 3]. Further, the analysis of these pro- 
grams in terms of the features measured by the micro benchmark 
suite gives insight into the reasons for the observed performance 
differences for the programs on different computers. 
An important factor in machine performance is cache, memory, 
and network interconnect behavior. A test has been developed that 
reveals a great deal about the memory hierarchy behavior (includ- 
ing the network), and a way of displaying the data from this test 
using a set of diagrams that we have named Physical and Perfor- 
mance Profiles (or P3 diagrams) has been developed. We will 
explain this test, and the main characteristics of the P3 diagrams, 
below. The data thus obtained, together with information about 
the rate of misses in a program, is factored into the other micro 
benchmark results as part of the prediction methodology. 
This paper reports results of the micro benchmark analysis of the 
KSR1. The machine contains many features (described below) not 
found in other machines. To understand the performance implica- 
tions of these features, it has been necessary to develop additional 
micro benchmarks beyond the initial, general purpose suite. These 
are described later. 
An open and interesting question is the analysis of parallel pro- 
grams, and the prediction of their performance through the use of 
micro benchmarks. This involves developing new tests for syn- 
chronization, access to shared variables, and probably features pro- 
vided in run time libraries for parallel machines. 



64 
sets 

subcache directory tag index offset 256KB subcache data 

23 6 

1 
11 

<  2-way associative » 
5  1   6 

byte 
.., 

\ \ 

\ « ■   1 1 

—^ ■H 
\\ ■" |u     ••••    -* 

block     32 x line state 
Ug 

subblock 
32 x 64B line data 

128 
sets 

local cache directory 

40-bit system virtual address 

tag 
page   pagi 

inde 

16-way associative 

page 128 x subpage state 
tag 

19 

I;e      page 
ex     offset 

IT 
32MB local cache data 

IX 
byte 

subpage 

Figure 1: KSR1 cache and subcache organization. 

However, it is not clear at this point which factors are relevant to 
take into account in building a reasonable model of program exe- 
cution which can produce predictions about the execution time of 
parallel programs. Furthermore, we believe that a substantial 
experimental understanding about the performance regimes exhi- 
bited by shared memory machines is required before any such 
model can be developed. We will report separately our results for 
message passing machines, and for other shared memory machines 
such as the Stanford DASH [8], for which we have also developed 
new micro benchmarks. 
As will be seen below, our approach reveals a great deal of 
interesting information about the KSR1. There is much more 
work to be done, however, to extend the approach into the area of 
prediction. 

3. Architecture of theKSRl. 
The KSR1 is a new architecture for parallel machines, and one that 
attempts to solve the problem of scalability in shared memory mul- 
ticomputers. The problem is that as the number of processors 
increases, the average cost of access to memory goes up. One 
approach has been to design faster memory interconnects, together 
with highly interleaved memory. This approach appears to be lim- 
ited to at most a few hundred processors. 

An alternate approach, explored by both Kendall Square and the 
Stanford DASH project, is to use a directory-based caching 
scheme with a relatively large amount of memory close to each 
individual processor. Both of these machines use a "message- 
passing'' interconnect mechanism rather than more typical memory 
interconnect methods. In the case of the KSR1, it is a ring of rings 
[6], while the Stanford DASH uses a 2 dimensional mesh intercon- 
nection [8]. 
The KSR1 is organized as a ring of rings, with up to thirty two 
processors connected to each lowest level ring, called ring:0. 
Ring:0 rings are interconnected by another ring, ring:l. Each node 
consists of a CPU, a 512-KByte subcache, 32 MBytes of cache 

128 x 128B subpage data 

memory, a cache directory, a ring interface, and an I/O interface. 
The directory supports the cache coherency protocol between pro- 
cessors and between rings. A total of 1088 processors can be con- 
nected as 34 ring:0 rings interconnected by one ring:l ring. Ken- 
dall Square Research intends to extend the hierarchy so as to con- 
nect even more processors in future designs. 
The processing component has four functional units: integer, float- 
ing point, control, and an I/O unit Instructions are issued in pairs: 
an integer or floating point instruction paired with a control or I/O 
instruction. The machine is a load/store architecture, with loads 
and stores issued by the control unit Some floating point instruc- 
tions result in two floating point operations. There are 32 integer 
registers, 64 floating point registers, and 32 addressing registers. 
The integer and floating point registers hold 64 bits, the addressing 
registers are 40 bits. The machine operates at 20 megahertz and is 
fully pipelined, with two branch delay slots. 

The user view of memory (called the Context Address - CA) is a 
segmented address space. Segments can range from 2a to 240 

bytes (in the current implementation) in length. The processor 
produces 40 bit addresses, interpreted as a segment number and 
offset The processor contains an instruction segment table, with 8 
entries, and a data segment table of 16 entries. 
The addresses generated by the processor are translated into Sys- 
tem Virtual Address (S VA) space. The segment tables include the 
base location of the segment in SVA the segment's length, and 
access permissions. Presumably, the segment tobies are fully asso- 
ciative. 

3.1. KSR1 ALLCACHE Memory Architecture 
The memory in each processor is organized as a two-level cache 
hierarchy. There is a large local cache that combines the functions 
of memory and a second level cache, and a subcache thatis the 
first level cache. Both caches are managed by a directory structure 
consisting of a large unit of allocation in the cache directory, and a 
smaller unit of data transfer, as shown in Figure 1. This is in con- 



trast with more common cache organizations in which the units of 
allocation and transfer are die same. 

There are instruction and data subcaches, each 256K bytes. Each 
subcache is managed by a subcache directory with 128 blocks each 
containing 32 subblocks. The directory is organized as 64 two- 
way associative sets with a random replacement policy. A refer- 
ence to a new subcache block incurs the overhead associated with 
invalidating all the subblocks of the block being displaced. The 
subcache is cache coherent with the local cache. The subblocks 
each contain 64 bytes of data. A read from the subcache is satis- 
fied in 3 clock cycles (load instructions have 2 delay slots). 

There is a 32 megabyte local cache in each node. There is no 
memory with a fixed address (hence the term "ALLCACHE"). 
Instead, memory is managed through a directory structure that 
makes all the cache memory in the machine visible and accessible 
to every processor. A similar memory architecture has been 
described in [5], where the term Cache Only Memory Architecture 
(COMA) is used. 

The local cache is 16-way set associative, and is organized in 16K 
byte "pages". Each page is divided into 128 "subpages" of 128 
bytes. These subpages are the unit of memory coherence. The 
directory contains an entry for each of the 2K pages that comprise 
the memory. Each entry includes a tag and the state of each sub- 
page, of which the visible states are invalid, read-only, exclusive, 
and atomic. Exclusive means that this is the only copy in any 
processor's local cache. Atomic is exclusive and locked. 

Neither the whole 32 MBytes nor the 16-way associativity is 
accessible from a user program. The OS sets aside a significant 
number of pages (close to 30% of the total memory) for its own 
use and these cannot be displaced out of the cache. We discuss in 
detail the effective associativity experienced by user programs in 
section 5.5. 

A consequence of this design is that if the processor references a 
subpage from a new page, all the lines from another page present 
in the cache may need to be evicted. In order to keep at least one 
copy of all pages currently being referenced, each page is assigned 
a "home" node. The home page provides space for every subpage, 
even if there are no valid subpages at the home node. Having a 
home node greatly simplifies evicting a subpage, as there is 
guaranteed to be a node with room for the subpage. If the home 
node must evict a page, the operating system will swap the page to 
disk or to another node's local cache to make room for the new 
page. A significant fraction of the node's memory is set aside by 
the operating system to be used as home pages [2]. 

The instruction set includes instructions to prefetch and poststore 
subpages. A prefetch allows the processor to read a subpage from 
another node without having to stall while nie request is serviced. 
There can be up to four prefetches outstanding at any time. If this 
limit is reached, then additional prefetches are either discarded or 
the processor is forced to block until one of the four pending pre- 
fetches completes. A field in the prefetch instruction determines 
the action to follow. An additional field indicates the state of the 
subpage mat is to be read: exclusive or read-only. A poststore 
instruction causes the local cache to broadcast a read-only copy of 
a subpage. All nodes with the subpage's page allocated in their 
cache will read it, provided the cache directory is not busy. 

A multi-ring machine contains a ring interface in each ring:0 ring 
that is a directory for the entire ring (that is, it contains an entry for 
every page that is in any processor cache in the ring). 

The data rate of ring:0 is 1 gigabyte/second. Ring:l supports a 
"fat" structure with multiple rings to provide 1.2, 2.4, or 4.8 
Gbytes/s bandwidth. Increasing the number of subrings in a ring:l 

structure reduces the total number of available nodes that can be 
used for processing in ring:0. 

The KSR1 provides sequential consistency, which implies that 
writes to a subpage cannot complete until all other copies present 
in the machine have been invalidated [7]. 

3.2. Paging on the KSR1 
The KSR1 scheme of allocating space in the caches in large, 
page-sized units and filling in units of cache lines (subpages) 
appears to be a reasonable compromise. If we consider the amount 
of storage required for cache directory information we see that the 
current implementation will require only about 100KB. This is 
calculated from having 2048 page entries, each of which includes 
an 19-bit tag and at least 3 state bits for each of the 128 subpages. 
A simpler implementation that separately allocated each subpage 
would require more than 700KB of directory storage. 

The cost of this method is that an entire page must sometimes be 
evicted due to a subpage miss. There are 219 pages in SVA that 
index to the same set of page positions (see Figure 1), and the 
cache is 16 way set associative at the page level. So sequential 
references to a set of only 17 pages can (in the worst pathological 
case) cause a page eviction at every reference. 

An advantage of the paged scheme is that it matches disk accesses 
well. When accessing a disk, a system wants to get big chunks 
from the disk since it's slow. With local cache pages, KSR1 can 
quickly clear a page's state to make room, especially since the disk 
page is the same size. Without cache pages a system would have to 
clear each block individually. This is likely to be done serially, 
since the tags would be in sequential RAM locations. 

The KSR1 implementation saves a significant amount of storage 
per node. This also greatly affects the ring interface node which 
must duplicate the entire state information of all 32 nodes on a 
ring:0. This is an important consideration when looking at larger 
configurations of the KSR1, as the ring directory must not become 
a bottleneck if the system is to be scalable. More important than 
the amount of storage in the ring directory is the time and cost to 
search it: it requires checking each of the 512 (32 caches * 16-way 
associativity) entries which might have a copy of the referenced 
page. 

3.3. Comments on COMA and NUMA 
The COMA organization of the KSR1 contrasts with a more tradi- 
tional directory-based NUMA (non-uniform memory access) 
machine such as the Stanford DASH by treating all of its main 
memory as a cache. NUMA machines treat a memory address as 
having a static, known location. The distance between a processor 
and the various main memory modules differs, leading to the non- 
uniform access distances. Both architectures commonly use the 
cache block as the coherency unit (i.e. sharing occurs on a block 
basis). Note that the KSR1 and Stanford DASH both include 
caches below the level of main memory to improve performance. 
The DASH has first and second-level caches, while the KSR has 
its subcache. 

One important difference in the architectures occurs when access- 
ing shared data. When a NUMA misses in its cache for con- 
sistency reasons, it will initiate a transaction to a node which is 
functioning as the "home" for this address. However, a COMA 
machine cannot direct its transaction to a specific location, instead 
it issues a request that will search the caches of the system until it 
finds the requested data. Determining which organization will be 
faster for a particular access depends upon the relative locations of 
shared data and the details of the coherency protocol. 



Factor KSR1 Alpha DASH 

Integer Add 44.0 ns 6.1ns 33.9 ns 
Integer Multiply 925 ns 98.1ns 3605 ns 
Integer Divide 4968.8 ns 198.9 ns 1023.2 ns 
F-PointAdd 52.5 ns 22.9 ns 88.2 ns 
F-Point Multiply 22.1ns 20.0 ns 147.2 ns 
F-Point Divide 1760.6 ns 171.9 ns 702.4 ns 
Complex Arith. 3199.1 ns 182.7 ns 7803 ns 
Intrinsic Func. 7969.6 ns 11343 ns 2683.0 ns 
Logical Ops. 148.5 ns 27.2 ns 106.7 ns 
Branch/Switch 148.2 ns 15.0 ns 36.4 ns 
Proc. Calls 757.2 ns 62.0 ns 379.6 ns 
Array Indexing 473 ns 39.7 ns 1114ns 
Loop Overhead 101.6 ns 19.5 ns 105.6 ns 

Table 1: Single CPU Performance of the KSR1, DEC Alpha 
4000/610, and DASH. 

4. Summary of KSR1 CPU Micro Benchmark Measure- 
ments 
As mentioned above, a micro benchmark suite that measures CPU 
performance has previously been developed and used to obtain 
measurements on a variety of uniprocessor machines. Results for 
many systems have been reported in [12, 13]. We have run the 
same suite on the KSR1 CPU. 
The CPU micro benchmarks are machine-independent, so instead 
of measuring machine instructions they measure operations 
defined in a high level abstract machine. The abstract machine is 
based on the Fortran programming language, so applications writ- 
ten in Fortran compile directly into the abstract machine code. 
The number and type of operations is directly related to the kind of 
language constructs present in Fortran. Most of these are associ- 
ated with arithmetic operations and trigonometric functions. In 
addition, there are parameters for procedure call, array index cal- 
culation, logical operations, branches, and do loops. 

In Table 1 we present the results we obtained, together with the 
results of running the same micro benchmarks on the Stanford 
DASH and a DEC Alpha 400 model 610 system running at 160 
MHz. The processor in the Stanford DASH is the MIPS R3000 
running at 33 MHz. In future work, we plan to use these bench- 
marks and provide a comparison of the KSR1 with a number of 
other parallel machines. 

5. Analysis of the KSR1 Memory Architecture 
As discussed above, a general methodology for analyzing the 
memory behavior of machines with caches has been described in 
[13]. We have extended this methodology with additional bench- 
marks that measure the memory hierarchy behavior of shared 
memory multiprocessors. Here, we give a brief explanation of the 
approach, and present the results we have obtained for the KSR1. 

5.1. Methodology 
There are many specific measurements one can make of a memory 
system. In general, there may be several levels of cache in addi- 
tion to the main memory in the system. The main memory may be 
a single global module or distributed among the nodes. If the 
memory is distributed, the processors may treat each module as 
local memory, or may share the memory of all modules in a glo- 
bal, shared address space. The properties of the memory intercon- 
nect, including bandwidth and latency under a variety of loads, are 

of interest There may also be a write buffer associated with each 
level of cache. There may be separate cache coherency directories 
as well as the cache itself. It is a challenge to simply measure the 
performance of all of these mechanisms in a way that shows what 
happens under a variety of conditions. It is clear that a few simple 
numbers are far from sufficient to characterize memory behavior. 

Beyond the issue of obtaining measurements that characterize the 
behavior of the memory architecture under a full range of condi- 
tions, there is the problem of presenting the results in a more 
meaningful form than a large table of measurements, or reducing 
the results to a few average numbers. Most useful would be a 
presentation of the results that allows a programmer with a specific 
application to understand what the memory performance of his 
program would be. We have developed a method of displaying the 
results mat captures a significant amount of information in graphi- 
cal form. We called these diagrams Physical and Performance 
Profiles (P3 diagrams) of the memory subsystem as they contain 
the physical characteristics of each memory structure in addition to 
the performance characteristics. 

5.2. The Structure of the Physical and Performance Pro- 
files 
Because of the complexity of the memory architectures of interest, 
the P3 diagrams require some effort at interpretation, but they have 
a great advantage as compared with a set of tables of results, and 
provide far more information than averages which summarize the 
measurements. The P3 diagrams are a set of plots representing the 
average execution time needed to read, modify and write (a R-M- 
W cycle) a single element in a sequence of locations (not neces- 
sary contiguous) taken from a region of memory as a function of 
the size of the region (Ä) and the distance (stride S ) between con- 
secutive elements. An alternative experiment consists of reading 
elements without changing their values. We refer to mis type of 
experiment as read-use cycle (R-U cycle). 

The access times are measured by taming the execution of a For- 
tran loop. Each data point on a curve is the mean time per itera- 
tion calculated from performing a fixed number of accesses to an 
array of the given size, using that stride. The clock resolution of 
the machine is 20 usec. By factoring out loop overhead and 
averaging over a large number of iterations, we believe that the 
error in our results is generally less than a clock cycle. 

Depending on the relative magnitudes of R and S of a R-M-W 
experiment with respect to the size, width, and associativity of the 
structures forming the memory hierarchy a distinctive value for the 
average execution time is obtained. All results are depicted as a 
set of curves, where each curve corresponds to a particular value 
of R, with all values of 5=2" from 1 to Rll plotted. In this sec- 
tion we briefly explain how to read these diagrams. A more exten- 
sive discussion can be found in [14]. 

For explanatory purposes, the discussion will focus in the effects 
of our experiments on a memory hierarchy consisting of a single 
cache. The explanation extends trivially to more complex hierar- 
chies and in what follows we provide some comments in this 
respect Depending on the values of R and S with respect to the 
size of the cache C, the line (block) size b and associativity a, we 
can observe one of four basic regimes. Furthermore, the response 
of a more complex memory hierarchy is just the superposition of 
the memory structures' individual responses, which always fit one 
of the four basic regimes. 

In the presentation we assume that all variables take values that are 
powers of two. However, if one of the physical dimensions of a 
memory structure happens not to be a power of two, it will be 
necessary to use different sequences of values for R and S. 



6(120) 

usec (cycles) 

5(100) 

KSR11-NODE PHYSICAL AND PERFORMANCE PROFILE: R-M-W CYCLE 

E 
x 

T 
1 

m 
e 

4(80) 

3(60) 

2(40) 

1(20) 

0(0) 

tubcache block size: 2048 bytes -_     - 

tubcache block miss: 
1660 ns 

tubcache 
tubblock tize: 

64 bytes : 

128K 
(2-way associative subcache) 

(random replacement) 

16 64 256 IK 4K 16K 
Stride 

64K 256K IM 4M 
bytes 

Figure 2: KSR1 single node Read-Modify-Write cycle physical and performance profile. 

Each micro benchmark consists of making multiple passes over an 
array of size R, accessing every 5* element The first pass (at 
stride 1) over region R will incur some cold misses, but this error 
is negligible due to the length of the micro benchmark. Micro 
benchmarks at larger strides will incur no cold misses, as they 
touch a smaller set of elements. 

The simplest regime (regime 1) occurs when R <C. Here, 
independently of the stride, all elements accessed by the experi- 
ments fit in the cache, so there are no cache misses in the steady- 
state phase of the experiment Therefore, the average time of the 
R-M-W cycle as a function of S is a constant line. Curve 128ÄT in 
Figure 2 is a clear example of regime l1. 

When R >C, misses start to occur, and depending on S we can 
observe one of three regimes (2.a, b, c). Regime 2.a occurs when 
S <b. Here, there are several consecutive accesses to each cache 
line in between corresponding misses, so the cache miss penalty is 
amortized amongst the accesses. As S grows, the average time for 
the R-M-W cycle increases in proportion to 5. All curves in Fig- 
ure 2 where R 2512AT and S <64 correspond to regime 2.a. 
Regime 2.b represents the situation where each reference falls into 
a different cache line and it always generates a miss. Formally, 
mis is true only if me cache replacement policy is either FIFO or 

1 Figure 2 represents the superposition of the effects of 
two memory structures: the subcache subblock and block or- 
ganizations. All four regimes, however, are clearly identifi- 
able in the figure and we make reference to it to illustrate the 
regimes. 

LRU. For a random replacement policy, the effect rapidly con- 
verges to that of LRU and FIFO as the number of lines mapping to 
a set increases above the degree of associativity. Regime 2.b 
occurs when b <S <Rla. Here, each experiment touches a sub- 
set of all cache sets, but the number of cache lines mapping to a set 
is greater than the associativity. This result follows from the fol- 
lowing argument There are Clab sets in a cache. In general, an 
experiment touches Rl(b f Slb~[) cache lines which are mapped into 
C/(afcf5/tl) sets if S £C/a or into a single set if 5 >Cla. In 
regime 2.b, 5 £ b, so Sib is always a whole number greater than 
one. Therefore, the number of lines touched are RIS and these are 
mapped into either ClaS sets or a single one. In both cases, each 
set receives RalC or RIS lines, respectively, and it follows from 
condition« >C that Äa/C >a and RIS >a. 

Therefore, in regime 2.b, the average time for the R-M-W cycle as 
a function of S is constant, assuming there are no other effects 
produced by the other memory structures, m Figure 2, regime 2.b 
corresponds to the two plateaus present in all curves in the regions 
Ää512ÄTand64<S<256,andÄ £512and2£ <S <R/4. The 
last regime (2.c) occurs when the number of different cache lines 
mapping into the same set is less than or equal the set- 
associativity. This situation is characterized by condition 
Rla <S <R. For this regime, the R-M-W cycle average time 
drops to the level of regime 1. Furthermore, the ratio RIS at 
which the drop occurs gives the set-associativity of the memory 
structure. In Figure 2 all curves where R ä 512K exhibit this 
behavior at their rightmost point, indicating that the set- 
associativity is two. 
In the next section, we discuss some specific performance charac- 
teristics of the KSR1 that are observable from the f3 diagrams our 



KSR11-NODE PHYSICAL AND PERFORMANCE PROFILE: RTJ CYCLE 

0(0) 

128K 
■X. -L. 

(2-way associative subcache) 
(random replacement) 
■ 

16 64 256 IK 4K 16K 
Stride 

64K 256K IM 4M 
bytes 

Figure 3: KSR1 single node Read-Use cycle physical and performance profile. 

experiments generate. Li the diagrams we identify the KSR1 
regimes by using roman numerals instead of the basic Tegime 
numbers. We do this to avoid confusion, because most of the 
KSR1 regimes represent the superposition of several basic regimes 
affecting different memory structures in the memory hierarchy. 

S3. KSR1 Single Ring, Single Node Performance 
Results 
In Figure 3 we show the performance of a single KSR1 node while 
reading data from the cache. The figure consists of curves for 
regions of size R=128K to MB, with strides of 8 bytes, 16 bytes, 
.... R/2 bytes. The KSR1 word size is 64 bits, so 8 bytes is the 
smallest stride. 
When the data set being accessed is smaller than the size of sub- 
cache (regime 1) there will be no cache misses and we can read the 
base time per iteration. The flat curve for the 128KB date set in 
Figure 3 shows this case, and we see that the average time per 
iteration of the loop for all strides used was about 650 
nanoseconds. This is the time to perform one iteration of the loop 
with a floating point add and multiply. 
The size of the largest such curve with no misses tells us the size 
of the subcache. In this case we see that the subcache is 256KB. 
The line is not completely flat due to interference from other data 
used by the process - the data set is the same size as the cache and 
any accesses to other data will cause cache misses. 

The 512KB and larger curves show us what happens in regimes 
2.a, 2.b, and 2c. The data is initially not in the subcache and the 
first reference to a subblock will cause a cache miss; succeeding 
references to the same subblock will hit At stride 8. there will be 

one miss and 7 hits. At stride 16, there will be one miss and only 3 
hits to each subblock. As we increase the stride, we decrease the 
number of hits and the cost of the miss is amortized over fewer 
accesses. At a stride of 64 bytes, the curve flattens out, as every 
reference is made to a different subblock. This indicates the tran- 
sition from regime 2.a to 2.b and we are able to conclude that the 
subblock size for the subcache is 64 bytes. 
We can also read the time taken to satisfy a miss to a subblock by 
measuring the difference in times between the case with a miss on 
every access (a data set of 512KB and stride of 64) and the case 
with no misses (a data set of 128KB). We see on the KSR1 that 
this is approximately 1300 nanoseconds. 
Between stride 64 and 2048 the curves repeat the same pattern of 
rising access times. This regime shows the effect of accessing a 
new block in the subcache. There is a second major inflection in 
the curve at a stride of 2048 bytes; this corresponds to the case in 
which every reference is to a new block of the subcache. From 
these curves, we are able to deduce that there is a directory struc- 
ture with blocks and subblocks which manages the subcache 
(which we call the subcache directory - Kendall Square Research 
has not published any information about this aspect of the architec- 
ture). 
At a stride of 256K bytes, the 512K byte curve shows that the cost 
of a read is the same as the cost when mere are no subcache 
misses. In contrast, if the stride is 128K bytes, the cost of a read 
includes the cost of a subcache page miss. From this, we can con- 
clude that the subcache is two-way set associative because at a 
stride of 256K bytes only 2 different subblocks are being accessed 
and they map to a single set in the cache. 



usec (cycles) 
600 (12K) 

400 (8K) 

E 
x 
e 
c 
u 
t 
i 
o 
n 

T 
i 

m 
e 

200 (4K) 

100 PK) 

60 (UK) 

40(800) 

KSR12 NODES PHYS. AND PERF. PROFILE WITH REPLACEMENT: R-M-W CYCLE 

cache page size: 16 Kbytes VI 

32K      128K     512K 
Stride 

32M     128M 
bytes 

Figure 4: Physical and performance profiles of the KSR1 subcache and cache structures obtained using 2 competing nodes running 
R-M-W based experiments. Each regime identifies the mean execution time for a particular combination of subcache and cache 
miss penalties. For array sizes smaller then 16MB, there is no contention between the nodes. 

Figure 2 shows the case of a loop that reads a word, modifies it, 
and writes the result back to memory. Compared with the read 
case shown in Figure 3, there are extra costs because the blocks of 
the subcache have been modified. This increases the subcache sub- 
block miss penalty by about 560 nanoseconds (approximately 11 
clock cycles), and the cost of a subcache block miss increases by 
about 300 nanoseconds (6 clock cycles). We note that the base 
case is 650 nanoseconds, as it was for the read case. From this we 
conclude that the write is completely overlapped with the loop 
branch and other operations. 

5.4. Subcache Random Replacement Policy 
Li Figure 3 we can also observe the fact that the subcache replace- 
ment policy is random. This manifests itself in the height of curve 
512K which reaches a lower height than the other curves in regime 
m. Regime IQ corresponds to basic regime 2.b. This basic 
regime assumes either an LRU or FIFO replacement discipline to 
enforce that every reference generates a miss (a subcache subblock 
and block misses in this case). With random replacement, how- 
ever, some subset of the references will not cause misses. 

As mentioned in section 5.2, in a cache of size C and associativity 
a, an experiment covering a region R will map RalC >a cache 
block into the same set Now, in a random discipline, me proba- 
bility pom, that a cache block will remain in the cache after a pass 
through all elements in the experiment is 

Pnm = 1-1 
a 

£-» a) 

Consequently, the average execution time per R-M-W cycle in 
regime in (I'm) should be: 

Tm = Tm + 0-/>«v)-A. (2) 

are, respectively, the average execution 
time without misses and the miss delay penalty. Now, if we 
replace the KSR1 parameters in eqs. (1) and (2) we get that the 
effective subcache miss delay penalty for curve S12K should be 
7/8 = 0.875 of D,«,. The results in Figure 3 for curve 512ÄT exhi- 
bit an effective delay penalty in the range .86 to .88. 

A more subtle manifestation of the random replacement policy in 
Figures 2 and 3 is the decrease in the effective delay penalty for 
the points S > Cla (128K) in curves IM and higher. In all these 
points there are R/S cache lines mapping to a single set and as S 
increases fewer lines are mapped to the set A similar argument to 
mat given above applies, except that now the exponent is R/S -1. 
We can see that the s? rend point from the right (identified by sym- 
bol §), which corresponds to stride S =R/4, should also have an 
effective delay penalty 7/8. Figure 3 shows that the miss penally 
drops to the same value of curve 512K. 

The previous discussion illustrates how effective the P3 diagrams 
are in capturing the complex performance space exhibited by 
shared memory machines. 

5.5. KSR1 Single Ring, Two Nodes Performance Results 
It is fairly expensive to use data mat resides in another node on the 
same ring in the KSR1. Figure 4 (see also Figures C-3 and C-4 
shown on the color plate page) shows a set of curves for read- 



usec (cycles) 
30(600) 

20(400)- 

KSR12 NODES PHYSICAL AND PERFORMANCE PROFILE: R-M-W CYCLE 

E 
x 
e 
c 

io (200) ~ y 7"Tiv" 
8 (160) - 

6(120) - 
5(100) - 

4(80) - 

m 
e 

cache subpage 
gran: 128 bytes 

VII 
cache page., 

gran: 16 Kbytes 
VIII 

16M        («Jiff, ring) 

cache subpage 
miss: 26100 ns 

Max Time Read-Modify-Write: 31250 as (625 cycles) 
Min Time Read-Modify-Write: 650 ns (13 cycles) 

/ cache subpage       subcache block 
miss: 7600 ns       size: 2048 bytes 

(same ring) 
• 16M 

8K 32K 
Stride 

2M 8M 
bytes 

Figure 5: Physical and performance profiles of the KSR1 subcache and cache structures obtained using 2 competing nodes running 
R-M-W based experiments. Each regime identifies the mean execution time for a particular combination of subcache and cache 
miss penalties. For array sizes smaller then 16MB, there is no contention between the nodes. 

modify-write (as was the case for Figure 2), when the data sets are 
as large or larger than the local cache. The 32 MByte line is par- 
ticularly interesting. Not all the data can fit in the local cache at 
one time, since some space is needed for the program, and perhaps 
for the operating system or other pages for which the executing 
node is the home cache. But clearly there is enough reuse of 
blocks that even at large strides (8K to 2M), the average cost of the 
memory accesses is somewhat less than the cost of large strides for 
larger data sets. 
As we mentioned in section 2, the KSR1 local cache is 32 MBytes 
*: .:• 16-way associative. However, some pages are "wired" by the 
operating system, so they cannot be selected as victims. In addi- 
tion, the local cache acts as home of some fraction of the user's 
pages. Hence, the effective cache size that a program sees is signi- 
ficantly less than the 32 MBytes and the effective set associativity 
is less than 16. 
Both of these characteristics are clearly present in Figure 4. For 
example, the 32M curve, which in principle should fit in the 
cache, clearly shows the presence of page misses with replace- 
ment If the entire 32 MBytes were available, the curve's shape 
should be the same as the 16 MByte curve. The reason why the 
curve reaches its highest point between strides 16K and 64K and 
then drops, is because the total number of pages touched by a par- 
ticular experiment is constant for all strides less than 16K and then 
it decreases in proportion to the stride. 

With respect to the set associativity, the three rightmost points of 
all curves having regions greater than 16 MBytes indicate that the 
cache associativity is 8-way. We can see this by noting that when 

the larger curves have a stride of 1/8 their size (e.g. 4MB stride in 
32MB data set), their access time drops back to the subcache block 
miss level. This occurs because we are referencing only 8 dif- 
ferent local cache pages and they map to a single set in the local 
cache. This value is less than the expected 16-way. Because our 
experiments change R and S only in powers of two, we detect 8- 
way associativity, while its real value can be any number between 
8 and 16. We have performed more detailed experiments and have 
found that the effective associativity varies from set to set in the 
range from 3 to 12. 
Finally, from Figure 4, we observe that the cost of removing and 
replacing a page in the cache is quite large (about 500 \tsec). It 
should be borne in mind that one or more blocks in each page 
being replaced have been modified (are in the exclusive state), and 
must be evicted before a new block of the new page can be 
retrieved. This is a form of page swapping or thrashing between 
memories in the same ring, and does not require that the pages 
being evicted be written to disk. 

5.6. KSR1 Two Rings, Two Nodes Performance Results 
So far, we have discussed the performance of a single node in 
accessing data, though the data may reside on more than one node. 
We now turn our attention to the case in which multiple nodes are 
writing to the same set of data. Figure 5 (see also Figures C-l and 
C-2 shown on the color plate page) shows an experiment in which 
two nodes in the same ring access data. This figure is like Figure 
3, but with two additional curves labeled "16M", for a 16 MByte 
data set  Two processes on different nodes are simultaneously 



Summary of the KSR1 Micro Benchmark Results Using One and Two Nodes 

Regime 
Misses 

Rings? 

Evict 
dirty 

page 

R-M-W Cycle Iteration Time 
Sub Cache Local Cache Total Time Residual Time 

subblock block subpage page time time Miss 
I no no no no n.a. n.a. 0.65 ns   baseline 
n 
m 

yes 
yes 

no 
yes 

no 
no 

no 
no 

n.a. 
n.a. 

n.a. 
n.a. 

2.50 ns 
420 ns 

1.85 ns 
i.70ns 

subblock 
block 

rv 
V 
VI 

yes 
yes 
yes 

no 
yes 
yes 

yes 
yes 
yes 

no 
no 
yes 

same 
same 
same 

n.a. 
no 
yes 

l.o.ions 
n.80ns 

520.00 ns 

7.60 ns 
i.70ns 

508.00 ns 

subpage 
block 
page 

vn 
vm 

yes 
yes 

yes 
yes 

yes 
yes 

no 
yes 

diff 
diff 

n.a. 
no 

28.60 ns 
3i.ions 

26.10 ns 
2.50 ns 

subpage 
block 

read-modify-write 

Table 2: Mean execution time for a single read-modify-write iteration. Each regime represents a combination of R and S producing a 
particular pattern of misses to a subset of the memory hierarchy. Column "Evict dirty page" shows the delay involved in moving a 
dirty page out of a cache after a cache miss. The dirty page has to be sent back to the "home" node. 

accessing the data set in read-modify-write mode, for different 
strides. In one case, the two nodes are on the same ring, and in the         — ——  
second case, they are on different rings. The figure shows that the 
cost of a miss in the local cache is about 7.6 nsec (at stride 128, 
the size of a subpage, every read misses), if the subpage is in 
another cache on the same ring. Note that the total cost of the 
access is the sum of all the misses, about 10.1 nsec. 

The cost of accessing smaller data sets will be the same as shown 
in the 16M curve, since the two processors will be invalidating 
each others" cache subpages. The experiment was designed so that 
the starting point for each processor was separated by 1/2 the size 
of the data set (i.e., 8 megabytes apart). In this way, the processors 
are not competing for the same data at the same time except at 
large strides. 

cache subpage miss 
subcadie block miss 7600 ns (152) 

subcache subblock miss 1700 ns (34) 
R-M-W baseline 185° M Q7) 

650 ns (13) 

From the curve for the case of two processes located in nodes on 
different rings, the subpage miss penalty is 27.8 nsec. The 
machine used for the experiment had two ring:0 rings intercon- 
nected by a ring:l ring. We assume that there were only two ring 
interfaces in ring: 1. If traversal time in ring:0 is about 7.5 nsec for 
33 nodes (including the ring interface), then about 13 nsec are 
consumed in the ring interfaces and in traversing ring:l. Since the 
per link data rate in ring:l is the same as ring:0 for this machine, 
the cost of the directory operations and ring insertions would 
appear to be consuming most of this time. 

The results displayed in Figures 4 and 5 show eight performance 
regimes (indicated by roman numerals in the figures). Each regime 
is determined by the number the misses it triggers in a number of 
enclosing levels of the hierarchy. Different regimes also identify 
the locations from which a miss can be satisfied. 

Regime I (Figure 5) represents the baseline time; the case when no 
misses are triggered by the micro benchmark. Regime II adds to 
the baseline the delay due to subcache subblock misses, while 
regime HI includes both subblock and block miss delays. 
Regimes IV and VII contain the effect of local cache subpage 
misses. The first captures the case when the miss is satisfied by a 
node in the same ring, while the second represents reading the data 
from a remote ring. In all regimes, except VI, the region of data 
covered by the micro benchmarks is less than the size of the local 
cache. Hence, all subpage misses occurring in these regimes are 
only the result of mutual invalidations between the nodes, because 
both nodes need exclusive rights over the subpage. 

Figure 6: Components of regime V (ring:0 latency). 

Li regime VI, on the other hand, satisfying a miss requires either 
evicting a dirty page if the micro benchmark is based on the R-M- 
W cycle or detecting that the page is not dirty and just dropping it 
if it is based on the R-U cycle. In the former case the complete 
dirty page has to be sent to the "home" node. In both situations 
there is a significant extra penalty involved. The results just dis- 
cussed are summarized in Table 2. 

Figure 6 shows the component times of a memory access in 
regime V. 

6. Communications Performance of the KSR1 
The performance of the interconnection network has a significant 
effect on the overall performance of parallel computations and 
greatly affects the granularity achievable. The experiments 
reported in the previous section which measured the performance 
of the memory hierarchy were carefully designed to minimize the 
effects of loading of the communications network. For real appli- 
cations, both memory performance and communications network 
performance will affect the overall rate of computation. In this 
section, we report on our experiments to investigate the perfor- 
mance of the KSR1 ring interconnection network. 

The experiments are similar to our memory experiments. A single 
shared array is accessed by several nodes. The array is divided 
into equal portions, with each portion accessed in a read-modify- 



10 

RING-© LATENCIES RING-1 LATENCIES 

fisec 

8.50 
L 
a 

t  8.25 
c 

n 
c  8.00 

y 

7.75 

7.50 

Analytical Model— 

Experiment —^ 

12     16     20     24     28     32 
number of processors 

Figure 7: Communication latency as a function of the number of nodes communicating. 

number of processors 

write cycle by only two nodes. The placement of the nodes and 
the assignment of portions of the array to nodes is carefully 
designed so that all nodes execute their portion of the experiment 
in in about the same amount of time. (This requires care; it is easy 
to construct experiments in which the performance of some of the 
nodes is much worse than other nodes, even though all are doing 
the same amount of work). 

6.1. Contention on a Single Ring: Analytic Model 
Here we present a simple model for the extra delay in latency due 
to contention in the ring in the case when all communication is 
local to ring:0. We then compare the model against experimental 
results. In our experiments, the time per iteration tua. can be bro- 
ken into two components: time of computation (t^^,) and time for 
communication (f«»™). Term („„„ has two additional com- 
ponents: the communication time without contention foe-co,«) and 
the extra delay due to contention (tpemaity(nmldc,)). The later term is 
a function of the number of communicating nodes (1^). Let 
»I,*,,,, be the number of slots in ring:0. On the average, when a 
node wants to drop a packet into the ring, there are 
{iMdu-lrtmo-amt/tuer other messages occupying slots. The proba- 
bility that a random slot is empty is given by 

1     ("»flAi ~ iy«»-t<»tf 
P**ply = 1 —~ • 

"dca »tier 

Now, the number of consecutive occupied slots passing through a 
node before an empty slot is found follows the geometric distribu- 
tion with parameter p«^,. Hence, the expected number of con- 
secutive occupied slots is (l-Pa^yVPcmm2- Given that the time 
between successive slots is »»-««/«jtott. we can compute the 
expected extra delay in latency due to contention as 

2 The mean number of slots passing through a node, in- 
cluding the empty one, is given by 

1-Pcmpt, 1 

P empty 

'pMafcy ("naiu) - 
«itou 

W. "W 

Ptmply 
(3) 

Eq. (3) does not apply to the case when nodes in different rings 
communicate. Unfortunately, we do not have enough information 
about ring:l and the interfaces between ring:0 and ring:l to pro- 
duce a realistic analytical model in this case. 

6.2. Experimental Results 
The graphs in Figure 7 shows the experimental values for 
*e«wi +'pe«fty ("»*») for various numbers of nodes. The figure 
labeled "RING-0 LATENCIES" also shows the latency predicted 
by eq. (3) in the single ring case. 

The ring-0 results in Figure 7 clearly show that in the case of a sin- 
gle ring, even when the latency tends to increase with the number 
of nodes, this increase is relatively modest. In fact the total 
increase in latency going from 2 to 32 nodes is less than 15% of 
the original t^^,. There is a small error between the analytical 
and experimental results which increases with the number of 
nodes. The maximum error observed is less man 11%3. This is 
because eq. (3) overestimates tp,^,, by assuming that t^ is 
independent of the number of nodes in the experiment. In actual- 
ity the time per iteration is given by 

tiurfameia) ~ lco~r + tuo-amt + tpaudty("no*«)• 

Considering this new term in (1) reduces the error between the 
experimental and analytical results to approximately less than 5 
percent 
The contention penalty when node communication requires send- 
ing messages through ring:l shows a more interesting behavior. 
Figure 7.b distinctly shows two performance regimes, one for less 
than 32 nodes and another for more than 32 nodes. In the former 
case increasing the number of nodes by one, on the average 

Pcmpty 
- + 1. 

3 The 11% error in fa^ represents only a 2% error in 
terms of the total communication latency. 



11 

increases latency by 152 ns C 3 cycles), while in the later case, the 
increment is as large as 1000 ns C 20 cycles). A simple model 
based on linear fit of both regimes gives the following formulas: 

for n < 32 152 nsxn+25200 ns 
L(n) = 

\ 1004ns x(n- 32) + 27500ns forn>32. 
(4) 

with respective correlation coefficients of 0.9713 and 0.9116. 
When the number of active nodes increases from two to 32 and 60, 
then eq. (4) gives a relative increase of 21% and 110% respec- 
tively in the total latency. 

From the data presented in Figure 7, we can estimate the data rate 
per node under various communications loads. The conflict-free 
rate for a node is about 17 megabytes/second (a 128 byte subpage 
every 7.6 usec). As the load gets heavy within a single ring, with 
the ratio between requests for data (cache misses) and computation 
of our experiments, the rate declines to about 15 megabytes/second 
when all 32 nodes are generating requests. When data moves 
between rings, rates are much lower. The range is 5 megabytes for 
one node without contention to about 4 megabytes when 32 nodes 
are active, and declining to less than 2.5 megabytes per second per 
node with a load of 60 nodes. 

7. Related Work 
Recently several other researchers have been investigating the per- 
formance of the KSR1. Boyd et al [1] show a method of measur- 
ing communications performance on multiprocessors using a syn- 
thetic workload based on matrix multiplication of generated 
matrices. Other researchers [10, 9] have also reported on experi- 
ments to measure the performance effects of specific features of 
the KSR1. The communication and synchronization performance 
of the KSR1 has been analyzed by Dunigan [4]. Singh et. al [15] 
present performance results of several kernel codes and some of 
the SPLASH benchmark suite on the KSR1 and DASH machines. 
Finally, analytic model comparing the potential benchmark perfor- 
mance of NUMA and COMA machines has been developed by 
Hagersten [5]. 

8. Conclusions 
Based on our measurements, it appears that the KSR1 
ALLCACHE memory architecture should gracefully extend to a 
large number of processors. It indeed fulfills its promise of a scal- 
able shared memory architecture. As with any parallel machine, 
the performance of parallel applications will depend on the degree 
and form of interactions between computations running on 
separate nodes of the machine. From our results, it is clear that 
there are types of shared access that are expensive, and that the 
programmer should be aware of the costs of accessing data, espe- 
cially at larger strides, that reside on a different node from the 
accessing node. 
The overall performance of any machine is a combination of its 
many features. The ALLCACHE memory is only one component 
of the KSR1. In addition to the processor, the ring of rings inter- 
connect is a major element. The architecture is interesting and 
effective. Our results do not permit us to give a relative evaluation 
of the machine in comparison with other architectures, but our data 
will we believe, help potential users in deciding whether to use 
the machine, and how to use it effectively. 

9. Acknowledgements 
We want to thank Tom Dunigan at Oak Ridge for giving us access 
to the KSR1 and to Eric Boyd who made useful suggestions. 

10. References 
[I] Boyd, E, Wellman, J.D., Abraham, S-, and Davidson, E., 

"Evaluating the Communication Performance of MPPs Using 
Synthetic Sparse Matrix Multiplication Workloads", Proc. of 
the 7th ACM Int. Conf. on Supercomputers, Tokio Japan, 
July 1993. 

[2]   Bryant, C, Personal communication, April 1993. 

[3] Cybenko, G., Kipp, L-, Pointer, L., and Kuck, D., Supercom- 
puter Performance Evaluation and the Perfect Benchmarks, 
University of Illinois Center for Supercomputing R&D Tech. 
Rept. 965, March 1990. 

[5] Dunigan, T.H, "Kendall Square Multiprocessor: Early 
Experience and Performance", Oak Ridge National Labora- 
tory Tech. Rept No. ORNL/TM-12065, April 1992. 

[6] Hagersten, E.. Landin, A., and Haridi, S„ "DDM - A 
Cache-Only Memory Architecture", Computer, September 
1992, pp. 44-54. 

[7] Kendall Square Research, KSR Parallel Programming, KSR1 
Documentation, February 1992. 

[8] Lamport, L. "How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs", IEEE Transac- 
tions on Computers, Vol.C-28, No.9, September 1979, pp. 
690-691. 

[9] Lenoski, D., Laudon, J., Gharachorloo, Gupta, A., and Hen- 
nessy, J., "The Directory-Based Cache Coherence Protocol 
for the DASH Multiprocessor", Proc. of the 17th Int. Symp. 
on Comp. Arch., May 28-31 1992, Seattle, Washington, pp. 
148-159. 

[10] Ramachandran, U., Shah, G., Ravikumar, S., and 
Muthukumarasamy, J., "Scalability Study of the KSR-1", 
22nd Int. Conf. on Parallel Processing, St Charles, August 
1993. 

[II] Rosti, E., Smirni, E., Wagner, T., Apon, A, and Dowdy, L., 
"The KSR1: Experimentation and Modeling of Poststore", 
Proc. of the 1993 ACM Sigmetrics Conf. on Meas. & Model- 
ing of Comp. Sys., Santa Clara, California, May 1993, pp. 
74-85. 

[12] Saavedra-Barrera, R.H., Smith, A.J., and Miya, E. "Machine 
Characterization Based on an Abstract High-Level Language 
Machine", IEEE Trans, on Comp. Vol.38, No.12, December 
1989, pp. 1659-1679. 

[13] Saavedra-Barrera, R.H., CPU Performance Evaluation and 
Execution Time Prediction Using Narrow Spectrum Bench- 
marking, Ph.D. Thesis, U.C. Berkeley, Tech. Rept No. 
UCB/CSD 92/684, February 1992. 

[14] Saavedra, R.H., Gaines, R.S., and Carlton, MJ., "Character- 
izing the Performance Space of Shared Memory Computers 
Using Micro-Benchmarks", USC Tech. Rept No. USC-CS- 
93-547, July 1993. 

[15] Singh, J.P., Truman, J., Hennessy, J., and Gupta, A., "An 
Empirical Comparison of the Kendall Square Research KSR- 
1 and Stanford DASH Multiprocessors", Supercomputing'93, 
November 1993. 

[16] SPEC, "SPEC Newsletter: Benchmark Results", Vol.2, Issue 
1, Winter 1990. 



12 

*e<jW 

Fig. C-1: KSR1 2-Node Physical and Performance Profile (Fig. 5). 
The projection is taken from point {-2.5, -1.7, +0.5}. 

Fig. C-2: KSR1 2-Node Physical and Performance Profile (Fig. 5) 
The projection is taken from point {-2.5, +1.7, +0.5}. 

Fig. C-3: KSR1 1-Node Physical and Performance Profile (Fig. 4). Fig. C-4: KSR1 1-Node Physical and Performance Profile (Fig. 4). 
The projection is taken from point {-2.5, -1.7, +0.5}. The projection is taken from point {-2.5, +1.7, +0.5}. 

1egi0«s,2e 

Fig'. C-5: KSR1 2-Node Physical and Performance Profile (Fig. 5). 
Cache misses satisfied in local ringO are shown. 

Fig. C-6: KSR1 1-Node Physical and Performance Profile (Fig. 4). 
The effect of misses with page replacement is shown. 


